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Abstract

This paper presents a dedicated approach to the calculation of the random response of assemblies with uncertain

interface characteristics. The random response is constructed using a polynomial chaos expansion (PCE). A decom-

position of the assemblies into substructures and interfaces is defined and associated with a dedicated computational

strategy which leads to a local/global algorithm enabling the treatments of the substructure and of the interface

problems to be uncoupled. Since the only uncertain parameters are those which appear in the interface equations, this

approach results in a drastic reduction of the computational costs. This paper first presents the classical stochastic finite

element strategy for this kind of problem, then details the proposed dedicated approach. The applications concern

structures assembled with uncertain elastic bonded joints. The proposed approach is compared to the Monte Carlo

method and to the stochastic finite element method.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Finite element calculations of structural assemblies are being used more and more in the industrial world
(Blanz�e et al., 2000). The recent progress in industrial finite element codes associated with the efficiency of

modern computers enable one to carry out increasingly detailed calculations on individual parts of an

assembly. It has become possible to take into account very complex geometries and material behavior.

Nevertheless, a critical aspect of such calculations is the modeling of the boundary conditions. Therefore, it

is necessary to calculate complete assemblies. Thus, the boundary condition problem is replaced by the

problem of modeling the mechanical behavior of the connections between structural parts. These inter-

actions between parts are often modeled by means of interface entities. Models of interface behavior have

been developed for contact, friction, joints, adhesives (Ladev�eze et al., 2000). . . The identification of the
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mechanical parameters of an interface’s behavior (stiffness and friction coefficients, fracture energies, . . .) is
a complicated task because one cannot perform experimental tests on a single interface: these are always

performed on a simple assembly containing the interface. Thus, the identification process must assume

complete knowledge of the rest of the assembly and is very often coupled with numerical calculations.
Consequently, considerable uncertainties can affect the mechanical parameters measured (Tong and Steven,

1999; Van Straalen et al., 1998). Moreover, in industrial applications where classical joining techniques

(bolts, rivets, . . .) are not possible, using adhesive techniques is of a great interest (examples: joining of

peaces of aircraft fuselage, connection of tubular structures . . .). In such situations, controlling the adhe-

sively bonded joints parameters (thickness of the joint, stiffness and quality of the adhesive, . . .) is very

difficult and this can lead to a great uncertainty on the response on the joints.

The aim of the work presented here is to propose an efficient approach for the prediction of the random

response of an assembly when significant uncertainties affect the parameters of the connections.
Starting with the assumption that the material properties of a particular interface can be modeled within

the framework of probability theory, a very rich mathematical background is available to completely

characterize the probabilistic behavior and evolution of the structure under external perturbations. Thus,

the treatment presented in this paper adheres to a probabilistic framework. The theory is based on the L2

properties of second-order random variables and the possibility of treating these variables as elements of a

particular Hilbert space (Wiener, 1938; Loeve, 1977; Ghanem, 1999). Effective analytical methods for

stochastic non-linear systems are applicable only in some simple cases. When dealing with more complex

systems, approximate methods and numerical integration are necessary. If the uncertainties are small,
perturbation theory is a very valuable tool for analyzing their effects (Kleiber and Hien, 1992). If they are

larger, then perturbation theory is not applicable. One obvious way to deal with stochastic partial differ-

ential equations (SPDEs) is the Monte Carlo method. This is an expensive technique, especially if some

higher-order accuracy is sought for the mean values, standard variations, queues of distributions, etc.

Various numerical methods for solving SPDEs have been proposed in the literature (Ghanem and Kruger,

1996). Ghanem and Spanos (1991) and Ghanem (1999) advocate a hybrid finite element and spectral ap-

proach, which we will refer to as the spectral stochastic finite element method (SSFEM), while the

monograph by Kleiber and Hien (1992) uses aperturbation approach. Elishakoff and Ren (1999) examine
engineering finite element methods for structures with large stochastic variations and point to limitations in

some of the approaches. Deb et al. (2001) present a theory of a posteriori error estimation and corre-

sponding adaptive approaches. More complete descriptions of works on computational methods for

SPDEs used to model stochastic behavior in mechanical problems can be found in the books by Kleiber

and Hien (1992) and Ghanem and Spanos (1991). Review articles were written by Vanmarcke (1983),

Lin et al. (1986), Vanmarcke et al. (1988) and Matthies et al. (1997). The application of the spectral sto-

chastic finite element method (SSFEM) for the analysis of randomly fluctuating properties of an interface

between two elastic media was addressed by Ghanem and Brzakala (1996) and concern a geotechnical
application.

Our computational strategy to solve the problem is based on the LATIN method. This method is a

general strategy which was developed initially for the analysis of non-linear structural problems (Ladev�eze,
1999). It has been successfully extended to the calculation of assemblies of structures involving many types

of connections (Blanz�e et al., 1995, 2000; Ladev�eze et al., 2000). In order to deal with such problems, the

technique is associated with a decomposition of the problem into substructures and interfaces. The LATIN

method is based on a decomposition of the problem into local, possibly non-linear, equations describing the

behavior of the interfaces and linear equations expressing the global equilibrium. Thus, since the only
uncertain parameters reside in the local equations of the behavior at the interfaces, this strategy results in

the treatment of the uncertainties and the treatment of the global problem being uncoupled.

In the following sections, the reference problem for a decomposition of an assembly into substructures

and interfaces will be presented first. The classical stochastic finite element procedure in which interface
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finite elements are used to model the connection will be described. Then, the proposed approach will be

developed for the case of uncertain elastic behavior at the interfaces. A comparison of the Monte

Carlo method, the SSFEM and our iterative approach will be shown for a simple one-dimensional

example. Finally, a two-dimensional industrial example comprising two adhesively bonded joints will be
presented.
2. The reference problem

Here, we are considering structural assembly problems in which both the behavior of the components

and the external loads are deterministic. The randomness of the response comes from the random behavior

of the connections. In general, random uncertainties are modeled using a parametric approach. Recently, a

non-parametric model of random uncertainties for reduced matrix models in structural dynamics was

proposed by Soize (2000). The information used in this model does not require the description of the

uncertain local parameters. This approach is based on a probability model for symmetric, positive definite

random matrices deduced from the entropy optimization principle (Jaynes, 1957).

Here, the system’s parameters, calibrated using experimental data, are modeled as random variables or
processes which span a Hilbert space HG. Assuming that the data are properly defined by a set of random

variables fnðhÞg, where h belongs to the space of random events X, the state of the system, which is itself

modeled as a random variable or process, lies in the Hilbert space HL. A set of basis functions fWg of this

space will be identified in the section dealing with polynomial chaos expansion (PCE). In order to isolate

the random aspect of the problem, we will be using a decomposition of the assembly; therefore, let us

present the reference problem on a decomposed structure.
2.1. Decomposition of an assembly

An assembly is composed of a set of substructures (each of which is a component of the assembly) which

communicate with one another through interfaces (each interface representing a connection): see Fig. 1.
Each interface is a mechanical entity with its own variables and its specific behavior which depends on the

type of connection. Many different types of connections can be modeled by this approach, but in this paper

we are considering only joints with a random elastic behavior. Two connected substructures are denoted

with superscript E and E0. Each domain is designed by V E (resp. V E0
) and their interface is designated by

CEE0
.

The interface variables are two force fields ~f E and ~f E0
and two dual displacement fields ~wE and ~wE0

(Fig.

2). By convention, ~f E and ~f E0
are the actions of the interface on the substructures and ~wE and ~wE0

are the

displacements of the substructures at the interface.
VE’VE

Γ EE’

Fig. 1. Decomposition of an assembly.
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Fig. 2. Interface variables.
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2.2. The problem in the substructures

We assume that the displacements and strains remain small during the evolution and, therefore, we make

the assumption of small perturbations. The displacement field at any point M of V E is a random field
~uEðM ; hÞ; the associated space is U. The strain field is �ð~uEðM ; hÞÞ and the current state of the structure is

characterized by the stress field rEðM ; hÞ.
The mechanical problem to be solved in each substructure is: find the displacement field~uEðM ; hÞ and the

stress field rEðM ; hÞ such that:

• Kinematic admissibility: 8M 2 V E, 8h 2 X
� ¼

Z
V

rE

~f E

~f E
�ð~uEÞ; ~uEjoV E ¼ ~wE ð1Þ
• Equilibrium: 8~uH 2 U, 8h 2 X
E
TrðrE�ð~uHÞÞdV E �

Z
V E

~f d �~uH dV �
Z
oV E

~f E �~uH dS ¼ 0 ð2Þ
where U is the set of finite-energy displacement fields on V E, ~uH a virtual displacement field and ~f d a

deterministic field of body forces.

• Elastic behavior: 8M 2 V E, 8h 2 X
¼ D�ð~uEÞ ð3Þ
where D is Hooke’s operator, which, in our case, is deterministic.

2.3. The problem at the interfaces

The mechanical problem to be solved at each interface is: find the force fields (~f EðM ; hÞ and ~f E0 ðM ; hÞ)
and the displacement fields (~wEðM ; hÞ and ~wE0 ðM ; hÞ) such that:

• Equilibrium: 8M 2 CEE0
, 8h 2 X
ðM ; hÞ þ~f E0 ðM ; hÞ ¼ 0 ð4Þ
• Behavior: 8M 2 CEE0
, 8h 2 X
ðM ; hÞ ¼ Rð~wEE0 ðM ; hÞ; aðhÞÞ ð5Þ
where the behavior is expressed in the form of a behavior law R among the forces and a displacement
jump across the interface ~wEE0

defined by:
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~wEE0 ¼ ~wE0 �~wE ð6Þ

and aðhÞ is a random material parameter. For example, a perfect connection between two substructures

would be modeled as the following behavior:
~wEE0 ðM ; hÞ ¼ 0 ð7Þ

In the case of random elastic conditions, the form of the behavior law R is:
~f EðM ; hÞ ¼ kðaðhÞÞ~wEE0 ðM ; hÞ ð8Þ

where k is the interface’s stiffness operator, which depends on a random material parameter aðhÞ.

2.4. Discretization

Standard finite element discretization is used for the displacement field in the substructures:
~uEðM ; hÞ ¼ NsðMÞuEðhÞ and �ð~uEÞ ¼ BuEðhÞ ð9Þ

where uE is the vector of nodal displacements and Ns are the classical finite element basis functions.

At the interfaces, a compatible discretization of the displacement fields is performed:
~wEðM ; hÞ ¼ NiðMÞwEðhÞ and wEE0 ¼ wE0 � wE ð10Þ

where Ni are the finite element basis functions at the interfaces (Schellekens and De Borst, 1993).

2.5. Global resolution

When the reference problem described above is solved by classical global resolution, the interfaces are

modeled by means of interface elements (Fig. 3). The nodal displacements at the interfaces wE do not

constitute additional variables, but are the restrictions of the substructure’s displacements uE at the

boundary:
RuEðhÞ ¼ wEðhÞ ð11Þ

where R is the Boolean operator for the restriction at the interfaces. Then, the global problem is written as:
KðaðhÞÞuðhÞ ¼ f ð12Þ
Solid elements

Interface elements

uE’
uE

w wE E’

Fig. 3. Mesh used for global resolution.
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where uðhÞ is the global vector of the nodal displacements and f is the deterministic vector of the nodal

external forces. The global stiffness matrix KðhÞ is the assembly of the deterministic stiffness matrices of the

substructures:
KE ¼
Z
V E

BtDBdV E ð13Þ
and of the random stiffness matrices of the interfaces (Schellekens and De Borst, 1993):
KEE0 ðaðhÞÞ
3. Polynomial chaos expansion (PCE)

Since the resolution process depends on the material properties of the interfaces, the nodal solution

variables uðhÞ can be formally expressed as a non-linear functional of the set fnjðhÞg used to represent the

material’s stochastic properties. It has been shown (Cameron and Martin, 1947) that this functional

dependence can be expanded in terms of polynomial chaoses (P-C). Then, the truncated P-C expansion of
the response takes the form:
uðhÞ ¼
XP
i¼0

uiWiðhÞ ð14Þ
where fWiðhÞg are polynomials in the Gaussian random variables fnig. fWiðhÞg are Fourier–Hermite

polynomials: they are orthogonal in the sense that their inner product hWjWki, which is defined as the

statistical average of their product, is equal to cjdjk. Moreover, one can show that they constitute a
complete basis in the space of second-order random variables. Therefore, once the deterministic nodal

solutions ui have been calculated, one obtains a complete probabilistic characterization of the process uðhÞ.
The number of polynomials (P ) depends on the order p of the PCE and on the number L of stochastic

parameters. The expressions of the polynomials used in this paper are given in Appendix A.

In the following sections, we will assume that the material parameters are constant throughout an

interface. If they were not constant as well as non-deterministic, one could easily use a Karhunen–Loeve

expansion to represent the spatial randomness of the interface’s characteristics (Ghanem and Kruger,

1996).
4. The spectral stochastic finite element method

The random character of the material property a is made explicit by its argument h. The stochastic
material property aðhÞ is represented by:
aðhÞ ¼ �að1þ dnðhÞÞ ð15Þ
where �a is the mathematical expectation of aðhÞ, d the coefficient of variation (standard deviation divided by

the expectation) and nðhÞ the standard normal random variable: nðhÞ � Nð0; 1Þ. For non-Gaussian material

properties, the PCE is used to represent the material properties: the Gaussian process is a particular case

chosen for the sake of simplicity (Ghanem, 1999). Following the traditional FE assembly procedure, this
leads to the corresponding expansion of the stiffness matrix:
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K ¼
XL
i¼0

niKi ð16Þ
where K0 denotes the stiffness matrix for the mean material properties and the other terms correspond to

the random fluctuations about the mean. The number of stochastic parameters is L. Expanding the nodal

solution uðhÞ with respect to the polynomial chaos basis:
uðhÞ ¼
XP
j¼0

ujWjðhÞ ð17Þ
and substituting Eqs. (16) and (17) into Eq. (12) leads to:
XP
j¼0

XL
i¼0

niWjðhÞKiuj ¼ f ð18Þ
An equality, in a weak sense, can be derived by projecting Eq. (18) onto the subspace spanned by the

polynomial chaos subset used in the approximation; this process results in the following equations:
XP
j¼0

XL
i¼0

hniWjðhÞWkðhÞiKiuj ¼ hWkðhÞif; k ¼ 0; 1; . . . ; P ð19Þ
The last equation can be rewritten as:
XP
j¼0

XL
i¼0

cijkKiuj ¼ d0kf; k ¼ 0; 1; . . . ; P ð20Þ
where the coefficients cijk denote hniWjðhÞWkðhÞi and can be calculated only once. This system of linear

equations must be solved for the unknown uj of the PCE. The details of the above procedure were pub-

lished in Ghanem and Spanos (1991). The implementation issues were addressed in a number of other

references (Ghanem, 1999; Ghanem and Kruger, 1996). These equations can be assembled into a matrix of

size ðP þ 1Þ � n� ðP þ 1Þ � n (n being the number of degrees of freedom) of the form:
Kð00Þ Kð01Þ � � � � � � Kð0P Þ

� � � � � � � � �
� � KðjkÞ � � � �
� � � � � � � � �

KðP0Þ KðP1Þ � � � � � � KðPP Þ

1CCCCA
u0
�
uk
�
uP

0BBBB@
1CCCCA ¼

f0
�
0

�
0

0BBBB@
1CCCCA ð21Þ
where
KðjkÞ ¼
XL
i¼0

hniWjðhÞWkðhÞiKi ð22Þ
In summary, this approach consist of expanding the random response process about a basis of the Hilbert

space of random variables and of calculating the coefficients of the expansion. The result is a convergent

expansion of the response in terms of multidimensional orthogonal polynomials. Although the method-

ology used is becoming widespread, serious obstacles have been encountered, from a computational point

of view, in practical implementations. In large and realistic problems, the methodology is either cumber-
some or computationally intensive. Some numerical strategies, such as iterative algorithms, have been

devised to overcome the numerical difficulties arising in this context (Pellissetti and Ghanem, 2000). The
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proposed approach uses the localization of the random characteristics in order to solve this type of problem

more efficiently.
5. A dedicated approach

5.1. Discretization for a mixed method

In order to avoid solving a large problem when polynomial expansion is being used, we are proposing a

dedicated approach which separates the treatment of the substructures from that of the interfaces. Here, the

interface equations are treated in a mixed manner. Thus, we introduce a finite element discretization of the

forces:
~f EðM ; hÞ ¼ NiðMÞfEðhÞ ð23Þ

The discrete form of the problem becomes: find the solution
s ¼
X
E

sE; sE ¼ fuEðhÞ;wEðhÞ; fEðhÞg
such that on each substructure, 8h 2 X,

• Kinematic admissibility: (discrete form of Eq. (1))
Ru

KE

h

fE

fE
EðhÞ ¼ wEðhÞ ð24Þ

where R is the deterministic Boolean operator for the restriction at the interfaces.

• Equilibrium and elastic behavior: (discrete form of Eqs. (2) and (3))
uEðhÞ ¼ hfEðhÞ ð25Þ

with KE the classical FE stiffness matrix which is here deterministic (see Eq. (3)) and
¼
Z
CEE0

Nt
iNi dC
• Interface equilibrium: (discrete form of Eq. (4))
ðhÞ þ fE
0 ðhÞ ¼ 0 ð26Þ
• Interface behavior: (discrete form of Eq. (5))
ðhÞ ¼ RðwEE0 ðhÞ; aðhÞÞ ð27Þ
5.2. The LATIN method

To solve the problem, we use the LArge Time INcrement (LATIN) approach (Ladev�eze, 1999). The
LATIN approach is based on the idea of separating the difficulties in order not to have to solve a problem

which is both global and random. The equations are split into two groups with two corresponding sets of

solutions:

• the set Ad of the solutions sE to the linear deterministic equations related to the substructures (Eqs. (24)

and (25));

• the set C of the solutions sE to the local equations related to the interfaces (Eqs. (26) and (27), which may

be non-deterministic equations).
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The search for the overall solution (i.e. the intersection of the two sets) is conducted iteratively by

constructing approximate solutions s which verify the two groups of equations alternatively over the whole

time history. Thus, each iteration in the process consists of two stages:

the local stage: for sn 2 Ad known, find ŝ such that:
ŝ 2

ŝ�

snþ

snþ
C ðinterfacesÞ ð28Þ

sn 2 Eþ ðsearch directionÞ ð29Þ

the global stage: for ŝ 2 C known, find snþ1 such that:
1 2 Ad ðsubstructuresÞ ð30Þ

1 � ŝ 2 E� ðsearch directionÞ ð31Þ
In our particular case of linear deterministic elastic substructures, the internal solution (displacement uEðhÞ)
can be easily calculated from the boundary values (wEðhÞ and fEðhÞ). Therefore, from this point on, we will

represent a solution s only by the force and displacement fields on both sides of an interface.

The search directions are chosen such that convergence of the algorithm is ensured (Ladev�eze, 1999).
These conjugate search directions depend on the scalar parameter k0:
ŝ� sn 2 Eþ � ðf̂E � fEn Þ ¼ k0ðŵE � wE
n Þ ð32Þ

snþ1 � ŝ 2 E� � ðfEnþ1 � f̂EÞ ¼ �k0ðwE
nþ1 � ŵEÞ ð33Þ
The resolution algorithm can be represented as shown in Fig. 4. The solution s to the problem is the

intersection of the sets Ad and C.
The solution to the problem does not depend on the value of the parameter k0. This parameter affects

only the convergence rate of the algorithm. For the quasi-static cases which interest us here, k0 is given by:
k0 ¼
E
Lc

ð34Þ
where E is the average Young’s modulus and Lc the largest dimension of the structure. An error indicator is

used to control the convergence of the algorithm. This indicator is an energy measure of the distance

between the two solutions sn and ŝ. PCE is used to represent all the problem’s variables:
Fig. 4. The LATIN algorithm.
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uEðhÞ ¼
XP
i¼0

uEi WiðhÞ ð35Þ

wE
n ðhÞ ¼

XP
i¼0

wE
inWiðhÞ; ŵEðhÞ ¼

XP
i¼0

ŵE
i WiðhÞ ð36Þ

fEn ðhÞ ¼
XP
i¼0

fEinWiðhÞ; f̂EðhÞ ¼
XP
i¼0

f̂Ei WiðhÞ ð37Þ
For convenience, we note wEE0 ¼ wE � wE0
the jump of displacement at the interface:
wEE0

n ðhÞ ¼ wE
n ðhÞ � wE0

n ðhÞ ¼
XP
i¼0

ðwE
in � wE0

in ÞWiðhÞ ¼
XP
i¼0

wEE0

in WiðhÞ ð38Þ

ŵEE0 ðhÞ ¼ ŵEðhÞ � ŵE0 ðhÞ ¼
XP
i¼0

ðŵE
i � ŵE0

i ÞWiðhÞ ¼
XP
i¼0

ŵEE0

i WiðhÞ ð39Þ
5.3. Resolution of the local stage

At the local stage, the quantities fEn ðhÞ, f
E0

n ðhÞ, wE
n ðhÞ and wE0

n ðhÞ are known from the previous global stage.

They are described by the coefficients of their chaos expansion: fEin, f
E0

in , w
E
in and wE0

in , i ¼ 0 . . . P .
In the case of a random elastic interface, the problem which must be solved at the local stage is expressed

by the following system.
f̂EðhÞ þ f̂E
0 ðhÞ ¼ 0

f̂EðhÞ ¼ kðaðhÞÞŵEE0 ðhÞ
ðf̂EðhÞ � fEn ðhÞÞ ¼ k0ðŵEðhÞ � wE

n ðhÞÞ
ðf̂E0 ðhÞ � fE

0

n ðhÞÞ ¼ k0ðŵE0 ðhÞ � wE0
n ðhÞÞ

8>>>>><>>>>>:
ð40Þ
We assumed the stiffness to be constant along the interface. As mentioned in Section 3, if they were not
constant as well as non-deterministic, one could easily use a Karhunen–Loeve expansion to represent the

spatial randomness of the interface’s characteristics (Ghanem and Kruger, 1996). Then, the problem is

composed of a set of independent problems at each node of the interface. The interface’s stiffness k consists

of a normal stiffness and a tangential stiffness. The normal and tangential problems are uncoupled.

Therefore, we are presenting only the resolution in one direction. We designate by ðf̂ E; f̂ E0
; ŵEE0 ¼ ŵE0 � ŵEÞ

the unknowns at one node and in one direction. ðf E
n ; f

E0
n ;wE

n ;w
E0
n Þ are the associated variables known from

the previous global stage. We assume that the behavior along the direction considered depends on a single

random stiffness parameter kiðhÞ. i 2 ½1 � � � L�, L being the total number of random parameters.
Then, the problem is expressed in the form of the following scalar system:
f̂ EðhÞ þ f̂ E0 ðhÞ ¼ 0
f̂ EðhÞ ¼ kiðhÞŵEE0 ðhÞ
ðf̂ EðhÞ � f E

n ðhÞÞ ¼ k0ðŵEðhÞ � wE
n ðhÞÞ

ðf̂ E0 ðhÞ � f E0
n ðhÞÞ ¼ k0ðŵE0 ðhÞ � wE0

n ðhÞÞ

8>>>>><>>>>>:
ð41Þ
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where the random stiffness ki is expressed according to Eq. (15):
kiðhÞ ¼ �kið1þ dniðhÞÞ ð42Þ
System (41) reduces to the following equation:
ð2kiðhÞ þ k0ÞŵEE0 ðhÞ ¼ k0ðwE0

n ðhÞ � wE
n ðhÞÞ � ðf E0

n ðhÞ � f E
n ðhÞÞ ¼ ~gnðhÞ ð43Þ
where the second member, denoted ~gnðhÞ, is known from the previous global stage. The variables are ex-

panded over the polynomial chaos.
ŵEE0 ¼
XP
j¼0

ŵEE0

j WjðhÞ and ~gn ¼
XP
j¼0

~gjnWjðhÞ ð44Þ
Eq. (43) becomes:
ð2�kið1þ dniðhÞÞ þ k0Þ
XP
j¼0

ŵEE0

j WjðhÞ ¼
XP
j¼0

~gjnWjðhÞ ð45Þ
A weak equality can be established by projecting this equation onto the subspace spanned by the poly-

nomial chaos subset used in the approximation; this process results in the following equation:
ð2�ki þ k0Þ
XP
j¼0

ŵEE0

j cjk þ 2�kid
XP
j¼0

ŵEE0

j cijk ¼
XP
j¼0

~gjncjk; k ¼ 0; 1; . . . ; P ð46Þ
where cijk ¼ hniðhÞWjðhÞWkðhÞi and cjk ¼ hWjðhÞWkðhÞi (according to Eq. (20)).

Using the orthogonality properties of the basis functions, we obtain:
ð2�ki þ k0ÞckkŵEE0

k þ 2�kid
XP
j¼0

cijkŵEE0

j ¼ ckk~gkn; k ¼ 0; 1; . . . ; P ð47Þ
and corresponds to a scalar system of size ðP þ 1Þ. Then, the remaining variables are calculated using the

following system:
f̂ E0
k ¼ �f̂ E

k ¼ 1
2
ðk0ŵEE0

k þ ~gknÞ
ŵE

k ¼ wE
kn þ 1

k0
ðf̂ E

k � f E
knÞ

ŵE0
k ¼ wE0

kn þ 1
k0
ðf̂ E0

k � f̂ E0
kn Þ

8>>><>>>: ; k ¼ 0; 1; . . . ; P ð48Þ
Thus, the resolution of the local stage consists of solving a series of small independent systems of size

ðP þ 1Þ at each point and along each direction.
5.4. Resolution for the global stage

At the global stage, the quantities f̂EðhÞ, f̂E0 ðhÞ, ŵEðhÞ and ŵE0 ðhÞ are known from the previous local stage.

They are described by the coefficients of their chaos expansion: f̂Ei , f̂
E0

i , ŵ
E
i , ŵ

E0
i , i 2 ½0 � � � P �.

At the global stage, the equilibrium equation (25), which also takes into account the search direction

(Eq. (33)), becomes:
KEuEnþ1 ¼ hðf̂E � k0ðŵE
nþ1 � ŵEÞÞ ð49Þ
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which, once kinematic admissibility (Eq. (24)) has been included, becomes:
½KE þ k0hR�uEnþ1 ¼ hðf̂E þ k0ŵEÞ ð50Þ
where ~KE ¼ ½KE þ k0hR� is a deterministic matrix.

Using the PCE (Eqs. (35)–(37)), we obtain:
~KE
XP
i¼0

uEinþ1WiðhÞ ¼
XP
i¼0

hðf̂Ei þ k0ŵE
i ÞWiðhÞ ð51Þ
where ~f E
i ¼ hðf̂Ei þ k0ŵE

i Þ on the right-hand side is known from the previous local stage. Since ~KE is

deterministic, a term-by-term identification of Eq. (51) leads to the following ðP þ 1Þ independent equa-

tions:
~KEuEknþ1 ¼ ~f E
k ; k ¼ 0; 1; . . . ; P ð52Þ
Once these independent problems have been solved, the boundary terms are calculated (kinematic

admissibility (Eq. (24))):
wE
inþ1 ¼ RuEinþ1; i ¼ 0; 1; . . . ; P ð53Þ
The forces are obtained using the search direction (Eq. (33)):
fEinþ1 ¼ f̂Ei � k0ðwE
inþ1 � ŵE

i Þ; i ¼ 0; 1; . . . ; P ð54Þ
It is important to observe that the matrices appearing in system Eq. (52) remain constant throughout the
iterations and, therefore, need to be factorized only once before the first iteration. An even more important

point is that the problems within the substructures are completely independent of one another and could be

solved in parallel very efficiently.
6. 1D example: traction of two beams with an uncertain connection

In this section, we present a simple 1D example. We will derive the exact solution (Appendix B) and give

the details of the SSFEM (Appendix C) and of our proposed approach (Appendix D). Let us consider the

assembly of two substructures (each substructure being a beam with deterministic behavior) connected by

an interface whose stiffness kðhÞ is assumed to be random (Fig. 5).
The assembly is subjected to uniaxial tension. The only quantities used to represent the behavior of the

beams are their respective tractional stiffness coefficients k1 and k2, which are derived from the material and

geometric parameters:
ki ¼
EiSi
Li

; i ¼ 1; 2
where Ei is the Young’s modulus, Si the cross-section and Li the length of the beam i.
u0=0

Beam 1 Beam 2
E1,S1,L1 E2,S2,L2

k(θ)u1 u2 u3
F0

Fig. 5. The two beams connected by a random interface.
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6.1. Convergence rate

The displacements converge rapidly toward the displacement calculated using the global method (Fig. 6).
6.2. Comparison of different methods

Fig. 7 presents the variation of the expectation and the variance of u2 with respect to the coefficient of
variation d, as obtained respectively with the exact solution, the perturbation method, the direct SSFEM

and the LATIN method. The LATIN method converges to the same solution as the direct SSFEM. The

results of the perturbation method are valid only for small coefficients of variation, whereas the PCE (with

order p ¼ 3) is able to yield good results for larger values of the coefficient.
6.3. Cost comparison between the direct method and the iterative method

In order to compare the computational costs of the different strategies, we studied a 2D version of the

previous 1D example. The behavior is still one-dimensional, but the 2D mesh makes it easy to vary the total

number of degrees of freedom and the number of degrees of freedom at the interface. For the direct SSFEM

resolution, we use a standard finite element solver: no special adaptation of the code was made to improve

the efficiency of the resolution contrary to numerical strategies devised to overcome the numerical diffi-
culties arising in this context (Pellissetti and Ghanem, 2000).

Fig. 8 shows the evolution of the computational costs of the direct SSFEM and of our proposed ap-

proach when the number of degrees of freedom increases. The order of the PCE is p ¼ 3 and there is only

one random variable, i.e. the number of functions in the expansion is 4 (P ¼ 3). Our approach becomes

much more efficient than the direct SSFEM when the number of degrees of freedom exceeds 1000.
5 10 15 20 25 30
Iteration

0.05
0.1

0.15
0.2

0.25
0.3

<U2> Mean U2

5 10 15 20 25 30
Iteration

0.0001

0.0002

0.0003

0.0004

<( U2−<U2>) 2> Var U2

Fig. 6. Convergence for the mean and variance of the nodal displacement u2.
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0.0025
0.005

0.0075
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δ
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Fig. 7. Polynomial chaos: order 3d ¼ 0:25.



Fig. 8. Comparison between the direct and LATIN calculations: problem with a single interface (PC: Pentium III proc. 1.1 GHz, 512

MB RAM).

Fig. 9. Comparison between the direct and LATIN calculations: problem with two interfaces (PC: Pentium III proc. 1.1 GHz, 512 MB

RAM).
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Fig. 9 presents the same type of example, this time with two interfaces. In this case, the number of
random variables is L ¼ 2 and the order of the PCE is p ¼ 3. Thus, there are 10 functions (P ¼ 9) in the

expansion (see Appendix A). The higher efficiency of the LATIN method is also observed on this example.
7. 2D example

Let us consider an assembly of three parts (Fig. 10) with two adhesively bonded joints (Tong and Steven,

1999; Van Straalen et al., 1998).

The dimensions, in millimeters, are shown in Fig. 10. The three parts have different material properties:

the base (1) is made of cast iron (E1 ¼ 120 GPa, m1 ¼ 0:3), the L-shaped connecting part (2) of steel

(E2 ¼ 200 GPa, m2 ¼ 0:3) and the vertical part (3) of aluminium (E3 ¼ 70 GPa, m3 ¼ 0:3). Part (3) is sub-
jected to a vertical traction force F ¼ 250 N. The quantities of interest are the displacement of point A at the

top of part (3) and the maximum stresses in the bonded joints.

The adhesively bonded joints (denoted I and II in Fig. 10) are modeled by interfaces. The normal (kn)
and tangential (kt) stiffness of each interface can be derived from the adhesive’s characteristics:



5

20

30 40

10 30

60

1

II

I

F

2

3

A

Fig. 10. The assembly with two bonded joints.
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kn ¼
E
e
; kt ¼

E
2ð1þ mÞe
where E is the Young’s modulus, m the Poisson’s coefficient and e the thickness of the adhesive. The

Young’s modulus is assumed to be random:
EðhÞ ¼ Eð1þ dnðhÞÞ

The two bonded joints (I and II) have the following characteristics:
EI ¼ 500 MPa; mI ¼ 0:45; eI ¼ 0:3 mm

EII ¼ 1000 MPa; mII ¼ 0:45; eII ¼ 0:3 mm
The mesh is composed of 17,820 four-node elements and contains 37,174 degrees of freedom.

Fig. 11 shows the probability density functions of the displacements at point A obtained by the LATIN

method. These are compared to the solution obtained by a classical Monte Carlo method (10,000 draws).

The results are very close. The LATIN results are the same as those obtained by direct resolution using the
PCE.

Fig. 12 shows the convergence of the estimate of mean and variance obtained by the Monte Carlo

method. They are compared to those obtained by the polynomial chaos method (fat dashed line). For a

given accuracy, the number of draws is given asymptotically by the central limit theorem. For example, the

estimate of Ux is given by:
h bUxi ¼ �0:02051� 0:0275nffiffiffiffip

N
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Fig. 11. Probability density functions of the displacements at point A (dI ¼ 0:2 and dII ¼ 0:25): comparison between the LATIN

solution and the Monte Carlo solution (10,000 draws).
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Fig. 12. Convergence of the mean and variance of the displacement Ux at point A (dI ¼ 0:2 and dII ¼ 0:25): comparison between the

LATIN solution and the Monte Carlo solution for a confidence level of 0.95 ðn ¼ 2Þ for various sample sizes.
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where n ¼ 2 for a confidence level of 0.95 and N is the number of draws. We can notice the very good

estimation by the polynomial chaos method both for the mean and the variance of Ux.

Table 1 compares the computational costs of the Monte Carlo method, the direct PCE and the LATIN

method. One can appreciate how considerably shorter the computation time is using the LATIN method

for this type of problem.

Fig. 13 shows the probability density functions of the maximum forces on the two interfaces. The

construction of these functions requires no computational effort because the forces are explicit variables

(represented using the PCE) in the LATIN resolution. These probability density functions were obtained
using 20,000 Monte Carlo draws of the variable n.

Fig. 14 shows the evolutions of the expectation and standard deviation of the displacement Uy at point A
when the coefficients of variation dI and dII vary between 0 (deterministic problem) and 0.4. One can

observe that this displacement is influenced by the stochasticity of both interface variables but the influence
Table 1

Comparison of the computation costs on a PC (AMD Athlon proc. 1.4 GHz, 1.6 Gb RAM)

Calculation CPU time (s)

Monte Carlo (10,000 draws) 75,700

Polynomial expansion––direct 780

Polynomial expansion––LATIN 185
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Fig. 13. Probability density functions of the maximum normal (FN) and tangential (FT) forces at the interfaces (dI ¼ 0:2 and dII ¼ 0:25).
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of the interface I is more significant because its stress type is dominating for the displacement at point A.
Fig. 15 shows the evolutions of the expectation and standard deviation of the maximum normal force Fn at
interface I when the coefficients of variation dI and dII vary between 0 and 0.4. Since the boundary con-

ditions are expressed in terms of prescribed forces, one can observe that the stochasticity of the variable at

interface II has nearly no influence upon the maximum forces at interface I: the forces applied on interface I

remain nearly constant whatever the stiffness of interface II is.

As in the one-dimensional example (see Fig. 7), the results obtained by the LATIN method and by the

direct SSFEM are the same. Therefore, they are not valid for large coefficients of variations as shown of the

1D example (Fig. 7).
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8. Conclusions

We presented a computational strategy suitable for the calculation of the random response of assemblies

of structures containing non-deterministic connections. This method is based on a decomposition of the

assembly into substructures and interfaces. Our computational strategy, based on the LATIN method,
allows the treatments of the random problem and of the global problem to be uncoupled. A polynomial

chaos expansion is used to obtain the random solutions. The examples presented showed the numerical

efficiency of the proposed approach compared to the Monte Carlo method and to the direct SSFEM for

two-dimensional assemblies containing random elastic bonded joints.

Since the uncoupled treatments of the local and global problems lead to a drastic reduction in problem

size, the numerical efficiency of the proposed approach can be very high. Another important point is that

the linear systems for the substructures are independent of one another and could be solved in parallel very

efficiently. The prolongation of this work will address non-linear interface behavior, such as contact and
friction conditions.

Appendix A. Basis functions of the polynomial chaos expansion

Table 2 presents the expressions of the basis functions of the PCE for the orders p ¼ 0–4 when only one

random variable n is used (L ¼ 1).

Table 3 presents the expressions of the basis functions of the PCE for the orders p ¼ 0–3 when two

random variables n1 and n2 are used (L ¼ 2).

Appendix B. 1D example: the reference solution

In this particular case, an exact solution is available and can be used to check the accuracy of various

numerical techniques. The characteristic equation of the uncertain interface is given by:
Table 2

One-dimensional polynomial chaoses and their variances (L ¼ 1)

i Wi hW2
i i p

0 1 1 0

1 n 1 1

2 �1þ n2 2 2

3 nð�3þ n2Þ 6 3

4 3� 6n2 þ n4 24 4



Table 3

Two-dimensional polynomial chaoses and their variances (L ¼ 2)

i Wi hW2
i i p

0 1 1 0

1 n1 1 1

2 n2 1

3 �1þ n21 2 2

4 n1n2 1

5 �1þ n22 2

6 n1ð�3þ n21Þ 6 3

7 ð�1þ n21Þn2 2

8 n1ð�1þ n22Þ 2

9 n2ð�3þ n22Þ 6
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kðhÞðu2ðhÞ � u1Þ ¼ F0 with u1 ¼
F0
k1

ðB:1Þ
kðhÞ is the interface stiffness, which depends on a random material parameter nðhÞ. A standard normal

distribution nðhÞ � Nð0; 1Þ is chosen for n and d represent the coefficient of variation according to Eq. (15).
kðhÞ ¼ �kð1þ dnðhÞÞ with hnðhÞi ¼ 0 and hnðhÞ2i ¼ 1 ðB:2Þ

The displacement u2 is an explicit function of the random variable n:
u2 ¼ gðnÞ ¼ F0
1

k1

 
þ 1
�kð1þ dnÞ

!
and n ¼ g�1ðu2Þ
The distribution of u2 is known and its density function fu2 is related to the density function fn by the
following equation:
fu2ðu2Þ ¼
fnðnÞ
j dgðnÞ

dn j
The expectation of u2 is given by:
hu2ðhÞi ¼ �u2 ¼ F0
1

k1

�
þ 1
�k
hY i
�

with Y ¼ 1

1þ dn
and the standard deviation of u2 by:
hðu2ðhÞ � �u2Þ2i ¼
F0
�k

� �2

hðY � hY iÞ2i
Fig. 16 presents the density function fn of the standard normal variable nðhÞ and the density function fu2 of
the displacement u2. The Monte Carlo results (10,000 draws) for the two variables are also presented on the

same figure.

Appendix C. 1D example: direct resolution using the polynomial chaos expansion

Let us interpolate the displacement uðx; hÞ between the nodal displacement vector uðhÞ and the shape

function vector NðxÞ:
uðx; hÞ ¼
Xn
i¼1

NiðxÞuiðhÞ ¼ NðxÞuðhÞ
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Fig. 16. Exact probability density functions fn and fu2 and the corresponding Monte Carlo results.
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By applying the strain–displacement relationship, we obtain:
½ðK0 þ nðhÞK1Þ�uðhÞ ¼ f ðC:1Þ
The stiffness matrices K0 and K1, obtained from the element stiffness matrices, are given by:
K0 ¼
k1 þ �k ��k 0

��k k2 þ �k �k2
0 �k2 k2

0@ 1A; K1 ¼
�kd ��kd 0

��kd �kd 0

0 0 0

0@ 1A

uðhÞ is the global vector of the unknown nodal displacements and f is the deterministic vector of the

external forces:
uðhÞ ¼ ½ u1ðhÞ u2ðhÞ u3ðhÞ �T; f ¼ ½ 0 0 F0 �T
The PCE of order p ¼ 3 (P ¼ 3, see Appendix A) yields:
uðhÞ ¼
X3
i¼0

uiWiðhÞ ðC:2Þ
The vectors ui represent the magnitude of the projections of the nodal displacement vector uðhÞ onto the

spaces spanned by the successive polynomial chaoses WiðhÞ. The dimension of each ui correspond of the

number of dof of the deterministic finite element problem. Eq. (C.2) leads to the following global linear

system (equivalent to system Eq. (21)):
K0 K1 0 0

K1 K0 2K1 0

0 2K1 2K0 6K1

0 0 6K1 6K0

2664
3775

u0
u1
u2
u3

266664
377775 ¼

f

0

0

0

2664
3775
The statistical moments can be obtained directly from the polynomial chaos representation of the solution.

The mean response vector is given by:
huðhÞi ¼ u0
and the covariance matrix Ruu of the response by:
Ruu ¼ hðu� huiÞðu� huiÞHi ¼
X3
i¼1

hW2
i ðnðhÞÞiuiuHi
where superscript H denotes hermitian transpose.
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Fig. 17. Density function fu2 for d ¼ 0:15 and 0.25 (expansion order p ¼ 3).
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Fig. 17 presents the results of the calculation of the density function fu2 for two different values of the

coefficient of variation d using the SSFEM. These results are compared with the exact solution. When the
coefficient of variation is relatively small (d ¼ 0:15), the SSFEM gives an almost exact solution. For a larger

value of the coefficient (d ¼ 0:25), the SSFEM solution is less accurate. The complete comparison is shown

in Fig. 7.

Appendix D. 1D example: LATIN method

We will merely review the main equations of the two stages of the LATIN method for this simple 1D

example.

D.1. Local stage: the interface with a random stiffness

We must solve Eq. (43)
26664
ð2kðhÞ þ k0Þðû2ðhÞ � û1ðhÞÞ ¼ ~gnðhÞ ðD:1Þ

The variables are expanded over the polynomial chaos:
ðû2ðhÞ � û1ðhÞÞ ¼ û12ðhÞ ¼
XP
j¼0

û12j WjðhÞ and ~gn ¼
XP
j¼0

~gjnWjðhÞ ðD:2Þ
If the order of the PCE is p ¼ 3, the size of the linear scalar system to be solved is ðP þ 1Þ ¼ 4:
a b 0 0

b a 2b 0

0 2b 2a 6b

0 0 6b 6a

37775
û120
û121
û122
û123

26666664

37777775 ¼

~g0n
~g1n
~g2n
~g3n

26664
37775 ða ¼ k0 þ 2�k; b ¼ 2�kdÞ
Then, the remaining variables are calculated from the system Eq. (48):
f̂ 2
k ¼ �f̂ 1

k ¼ 1
2
ðk0û12k þ ~gknÞ

û1k ¼ u1kn þ 1
k0
ðf̂ 1

k � f 1
knÞ

û2k ¼ u2kn þ 1
k0
ðf̂ 2

k � f 2
knÞ

8>>>><>>>>: ; k ¼ 0; . . . ; 3
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D.2. Resolution for the global stage

All the quantities f̂ and û are known from the previous local stage. The system Eq. (52) must be solved

for each substructure i:
ki �ki
�ki ki

� ��
þ k0 0

0 k0

� ��
u1in
u2in

� �
¼ f̂ 1

i þ k0û1i
f̂ 2
i þ k0û1i

" #
Therefore, for each substructure, one must perform P þ 1 ¼ 4 resolutions of 2· 2 small systems with P þ 1

right-hand sides. Let us remember that the matrices remain constant throughout the iterations. Once these

independent problems have been solved, the boundary terms are calculated (Eq. (53)) and the forces are

obtained using the search direction (Eq. (54)).
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